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Abstract

Although a large number of systems have been developed for Non-
Photorealistic Rendering, many of them remain specific to a set of
styles, without the ability to easily create new styles. We present
a framework for artistic rendering, called “Style Spheres,” that can
learn new styles by example. A source image is first presented to
the system, consisting of a sphere drawn or rendered in the desired
style. The style of rendering in the sphere is learnt by the system
and applied to complex 3D models and scenes.

The framework is based on a targeted, deterministic search pro-
cess. Pixels in the output image are mapped to those in the input
sphere by searching for the closest match. The images resulting
from this synthesis have styles, perceived similar to those of the
input spheres. Thus, Style Spheres provides an easy and intuitive
method for design and specification of rendering styles.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display Algorithms; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Color, shading, shad-
owing, and texture; I.2.6 [Artificial Intelligence]: Learning—
Analogies; J.5 [Computer Applications]: Arts and Humanities—
Fine arts

Keywords: non-photorealistic rendering, image based rendering,
texture synthesis, texture transfer, machine learning

1 Introduction

When providing tools to artists, it is important to allow them to de-
fine their own styles. In particular, artists should be limited only
by their own creativity, not the tools they use. Many previous NPR
techniques have perfected a specific set of styles, rather than allow-
ing users to create new ones. In this paper, we present a system that
allows artists to specify and create new, unique styles that can be
used to render 3D models.

Our system, called Style Spheres, allows the user to specify a
particular rendering style by providing a drawing of a sphere in
the desired style. This sort of by-example interface keeps the style
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Figure 1: A sample rendering from our system. The artistic style
applied to the model is transferred automatically from the hand-
painted sphere shown in the upper-right.

creation process intuitive and user-friendly by hiding the technical
details of the underlying rendering system. In addition, a picto-
rial example is particularly effective, since it is often impossible to
capture the subtleties and uniqueness of an artist’s desired drawing
style with equations or words.

In order to apply the given style to a rendering of arbitrary 3D ge-
ometry, we use a targeted, deterministic search process inspired by
previous work in texture synthesis. Each pixel in the output image
is mapped to a pixel on the sphere, ensuring that the neighborhoods
of the pixels are similar. Our search process is accelerated by tar-
geting it to the area on the sphere that has the same normal vector
as that of the pixel being rendered. We also transfer the drawing
style of the object’s silhouettes, which can be crucial to achieve the
illusion of a hand-drawn model.

The remainder of the paper is organized as follows. Section 3
describes the algorithm used for rendering in detail. We also dis-
cuss different parameters that affect the synthesis process. We con-
clude by discussing the advantages and limitations of our approach
in Section 4 and propose some directions for future work in Section
5.

2 Previous Work

An enormous amount of related research already exists in various
different areas of nonphotorealistic rendering, including painterly
rendering [Meier 1996]; sketching [Curtis 1998]; hatching[Praun



et al. 2001]; pen and ink illustration [Winkenbach and Salesin
1994]; technical illustration [Gooch et al. 1998]; and interactive
techniques [Daniels 1999; Kalnins et al. 2002]. For a more exhaus-
tive overview of NPR techniques, refer to [Gooch and Gooch 2001]
or to [Strothotte and Schlechtweg 2002].

Much of the previous work in NPR has focused on providing a
particular look, rather than allowing users to create new styles of
rendering. Even though interactive techniques help the user to ad-
just parameters, the final renderings are still typically restricted to
some specific rendering styles. Halper et al. propose a rendering
pipeline that allows designers to iteratively modify the rendering
style using elementary operations [Halper et al. 2002]. Their work
focuses on the user interface and how to make it intuitive and user-
friendly for designers. There have been a few notable exceptions
that allow the user to define the style by example, Hertzmann et
al. described a system where curves could be stylized using exam-
ples [Hertzmann et al. 2002]. Jodoin et al. developed a system to
do hatching by example [Jodoin et al. 2002]. Note that in this case,
although the system does use examples to define the style, those
styles are still limited to hatching and could not capture the effects
of a watercolor painting, for example.

Sloan et al. captured style from works of art using Lit
Spheres [Sloan et al. 2001]. Our technique is similar in spirit; We
use spheres to define the rendering style for 3D objects. Our system
differes from Lit Spheres in two main ways. First, we are able to
correctly capture the look of the object’s silhouettes. Second, and
perhaps more importantly, Sloan et al. concentrated on providing
methods to create the Lit Spheres, and then simply used them as
environment maps applied directly to geometry. When using en-
vironment maps, the detail in the sphere maps can be lost due to
blurring and stretching. Our method preserves the fine details of
the texture by using texture synthesis.

The algorithm underlying Style Spheres is primarily based upon
research in texture synthesis by Wei and Levoy [2000]. Their al-
gorithm takes an example texture patch and produces new images
of different sizes that look like the given sample. Ashikhmin built
upon this work and increased the quality and efficiency of the al-
gorithm [Ashikhmin 2001]. Hertzmann et al. used these concepts
to apply filters to 2D images [Hertzmann et al. 2001]. Their frame-
work takes two images, one of which is assumed to be the filtered
version of the other, and applies a similar filter to a third image.

Style Spheres extends this idea to three dimensions. Using a sim-
ilar filter, a 3D model can be rendered to look like a given texture. In
place of using regular textures, we use as input an image of a sphere
as it would look when rendered in the desired style. In Hertzmann’s
method, if the first image is the normal map of the sphere, and the
third image is the normal map of the 3D model, the result would be
a 3D model rendered in a similar style as the input sphere. Since the
normal maps are known to us, we only need the textured sphere as
input, along with the 3D geometry. Further, the pixels in the source
and target images should have similar normals, so we can reduce
the search space from the entire image to just a few pixels around
the normals. By making this assumption about the similarity of the
surface normals, we were able to reduce the rendering time from
hours to seconds, while actually improving the final image quality.

3 Algorithm

In this section, we describe in detail the data structures and algo-
rithms for Style Spheres. We will use a similar notation to previous
work.

3.1 Definitions and Data Structures

As input, our algorithm takes an image of the Style Sphere S, along
with the 3D geometry G. It produces image O as output.

Each image consists of an array of pixels. In addition to the stan-
dard (r,g,b) triple, we also require luminance values y, which can
be easily computed as y = 0.299(r) + 0.587(g) + 0.114(b). To-
gether, these four channels comprise the feature vector for each
pixel. We denote the complete feature vector of a pixel p in an
image I as I(p).

The luminance values alone are used to compare pixels. This
serves two purposes. First, because the human eye is more sensitive
to changes in luminance than changes in color, this technique has
been shown to yield perceptually better results. In addition, using
only luminance speeds up image synthesis, as we only compare one
value for each pixel in place of three.

3.2 Initialization and Main Loop

Figure 2: Rendering without environment map (left), Style Sphere
(middle), Rendering with environment map (right)

Two images of the 3D scene are first rendered using the hard-
ware. The normal map for the 3D scene is rendered and stored in
an image N. The scene is also rendered using the input sphere S
as an environment map, as in the Lit Spheres technique. This im-
age is stored as the initial output buffer O in place of the random
noise image used by Wei and Levoy. The environment map gives
an approximate structure to the strokes, so we use the environment
map as a starting point in order to capture the orientation of larger
strokes. This yields better results in styles that have strokes ori-
ented in certain directions along the sphere. Figure 2 shows an
image rendered without (left) and with (right) an environment map.
In the image rendered without the environment map, the continuity
and orientation of the strokes is lost, and the style looks different
from that of the Style Sphere. In order to use the data from the
environment map, we need to compare the complete region around
the pixel in consideration, as opposed to previous techniques that
only compare the region that has already been rendered (Figure 3).

Next, we loop through the output buffer in scanline order, and
replace each pixel with a copy of the “best match” pixel from the
Style Sphere. The best match will be a pixel on the Style Sphere that
has a similar neighborhood to the target pixel in the output image.
Section 3.3 describes the method of finding the best match in detail.
In place of using the scan-line order to loop through the pixels,
we also experimented with other orders such as fixed interval and
random. Changing the order did not have a significant effect on the
output, so the scan-line order was used for efficiency and simplicity.



Figure 3: Search regions used by previous techniques (left) and our
technique (right)

The following pseudocode implements the above algorithm:

function STYLESPHERES(S,G):
Render image N, as normal map of G

Render image O, as G sphere mapped with S

for each pixel q in O in scan-line order

p = BESTMATCH(q,S,O,N(q))
O(q) = S(p)

return O

3.3 Finding the Best Match

The BESTMATCH function is the key to our algorithm’s success.
Its role is to find a pixel in the Style Sphere to replace the one in
the output image. The function takes the current pixel in the output
image q, the Style Sphere S, the output image O, and the normal n
for the geometry at q. It loops through all the pixels in the search
region around the normal n, and comparing the local neighborhood
with the neighborhood around q. Points are weighted by a Gaus-
sian centered at the search center so that points close to the center
contribute more to the match. The optimal size of the Gaussian will
depend on the texture of the substrate (such as paper, canvas, etc.).
For fine textures, a smaller sized filter is sufficient. In practice, we
found that a 5×5 filter was adequate for most textures.

Unlike some previous techniques, we do not need to search
though the whole texture, since it is likely that the pixels in both
images will have similar surface normals. Since the normal infor-
mation is known to us, we can use it to target the search process.
The normal n at pixel q is mapped to a pixel on the Style Sphere,
and the search area is reduced to a small region around it. We found
that a search area of 5×5 performed best in practiec; increasing the
search area further did not result in noticable improvements in the
quality. Previous techniques used multi-resolution techniques in or-
der to accelerate the search process, but this step is not necessary
for our algorithm, as our search area is already small enough. All
of the examples shown in this paper were rendered using a search
area of 5×5 with Gaussian weighting.

Since we are operating at the pixel level, the size of the texture
of the substrate remains consistent over the different areas of the
image. Further, the size of the 3D geometry does not affect the
size of the texture, which remains consistent with that of the Style
Sphere. Figure 4 shows the texture at different parts of a rendered
image, as well as that on the Style Sphere.

Following is the pseudocode for the “best match” step:

function BESTMATCH(q,S,O,n)
Start with a best match b = pixel in S at normal n

for each pixel k in search region around n in S

Figure 4: Different parts of a rendered image and corresponding
parts on the Style Sphere. Notice that the texture remains consistent
in size as well as style.

for each pixel l in neighborhood of k

Find corresponding pixel m in neighborhood of q

Compute weighted diff between S(l) & O(m)
Compute the average weighted difference

if k is a better match than b

b = k

return b

3.4 Silhouettes

Figure 5: An edge of a model, without rendering the silhouette (left)
and with the silhouette (right)

Properly capturing the style of the silhouettes is a crucial com-
ponent to accurately reproducing the intent of the artist. Without
special handling, the object silhouettes will appear perfectly crisp
and will tend to look synthetic and unnatural. Figure 5 shows
model edges with and without the silhouette rendered from the
Style Sphere. The edge where the silhouette is rendered artistically
(right) looks much more natural.

In order to render the silhouettes, we map the pixels that lie near
them to a point on the Style Sphere’s silhouette. We first determine
the point on the edge of the geometry that lies closest to the pixel
on the silhouette, and compute the vector from the edge point to the
pixel being drawn. Using the normal of this edge point, a corre-
sponding point on the edge of the Style Sphere is calculated. We
then perturb this Style Sphere edge point using the vector from the
previous step, yielding a new point inside the Style Sphere. The
BESTMATCH function is then used to determine the color of the
pixel. We render the silhouettes upto a distance of 10 pixels from
the edge of the geometry. In place of using the scan-line order, they
are drawn during a separate rendering pass, in increasing order of
their distance from the edge of the geometry. This helps improve
the quality of the edges, as they have not been sphere mapped, and
thus there is less noise than that in the scan-line order.



In cases where the silhouette is thin, it need not be explictly ren-
dered. If the normals are mapped to the Style Sphere such that the
silhouette edges lie just inside the sphere, they will be rendered au-
tomatically. This also helps in rendering the feature edges that lie
inside the models. There is not always an easy solution, however, as
the Style Sphere’s silhouette edges may not have a consistent width.
We obtained the best results by mapping the normals such that the
silhouettes lied close to the edge of the Style Sphere.

4 Discussion

We have described a framework that allows users to intuitively cre-
ate and specify a rendering style by example. In addition to im-
proving on the quality of previous methods, we have also improved
rendering speed by three orders of magnitude (hours to seconds).
When using a 256× 256 input sphere and rendering an 800× 800
output image, Hertzmann et al.’s method took three hours, as com-
pared to our framework, which took 11 seconds on the same com-
puter. Since the normal map and the environment map are rendered
very quickly using graphics hardware, our rendering time is propor-
tional to the size of the output image and not the geometry.

The spheres used for testing were derived from mainly two
sources. Some of the spheres were drawn by art students using
different physical media and then scanned, while others were cre-
ated in Adobe Photoshop. The system was successfully able render
the 3D geometry in similar styles for most cases.

It is important to note that the results produced by our system
may not reproduce a particular effect as faithfully as a special al-
gorithm for producing the specific style. However, our results are
qualitatively quite good, and we allow users to easily experiment
with new styles without adjusting any parameters. We feel that this
extremely intuitive interface to style-by-example makes our texture
synthesis based approach attractive for novice users or for users
who desire a wide variety of rendering styles.

4.1 Limitations

Wei and Levoy’s texture synthesis works best on natural textures,
and can fail on textures with very regular structure. Because we rely
directly on this algorithm to find matching pixels in the style sphere,
our system can also fail in these cases. Figure 6 shows two such
cases. On the left, the small dots on the Style Sphere are not repro-
duced. This failure can not be completely attributed to the texture
synthesis application, however; the environment mapped rendering
that we use as a starting point enlarges and stretches the dots, mak-
ing it even harder for the texture synthesis algorithm to find a good
match. On the right, the style sphere is made up of strokes aligned
along the sphere in multiple directions. In places where there are
strokes only in one direction, the framework can detect the strokes
and render them effectively, but in places where there are strokes
in multiple directions, the framework can not detect the structure
and thus the strokes are lost. Although the final rendering looks
reasonable, it is not a faithful reproduction of the original style.

5 Future Work

Style Spheres are quite effective for reproducing many different
styles of drawing, but there are many areas for improvement:

Highly curved or sharp areas: In areas of high curvature, the
rapid change in surface normal can lead to a poor match in the style
sphere. Even more fundamentally, the artist might want to draw

Figure 6: Failure cases for Style Spheres. These drawbacks mainly
come from limitations of the texture synthesis method, which has
difficulty capturing fine local structure.

sharp edges in the model with a certain style, but there is no op-
portunity to show that style with only a sphere as input. We would
like to provide additional sample drawings of simple objects with
different local surface properties, such as cubes (for edges and cor-
ners).

Brush strokes: Our system currently operates only in image
space and might therefore miss higher-level attributes of the brush
strokes. If the user were to use the computer to paint the Style
Sphere itself, we could extract stroke features from the sample
drawing and make more intelligent choices about how to render
the 3D model.

Structured samples: In the last section, we showed examples of
styles where our technique failed to capture the local structure of
the input. We would like to experiment with newer texture synthe-
sis algorithms that better support these kinds of sample inputs. In
particular, we would like to be able to accurately capture the fine
stroke detail in pen-and-ink drawings.

Mesh deformation: In cases where the input sphere is not per-
fectly round, the rendered model also appears deformed. Although
this can be the desired effect, it can leaves gaps in the rendered
geometry. A system that deforms the geometry before rendering
would help remove this artifact.

Animation Currently, the system produces only still images, and
will not maintain frame to frame coherence in animation. A nat-
ural extension to the system would be to match features between
two frames to maintain frame to frame coherence. If the brush
strokes can be separated from the texture of the substrate, as dis-
cussed earlier, the system could also maintain coherence by using
a fixed texture for the substrate, and applying the brush strokes on
the geometry.
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Figure 7: Photoshop Dry Brush Filter
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